

INSTRUKCJA OBSŁUGI

Katodowa ochrona antykorozyjna zbiorników ciepłej wody przez zasilany prądowo system anody tytanowej.

Ochrona zbiorników stalowych emaliowanych przy pomocy prądowej Ι. anody tytanowej.

W przeciwieństwie do zużywającej się anody magnezowej, prądowa anoda tytanowa pracuje prawie bez ubytku masy dzięki wykonaniu w całości z tytanu i pokryciu części czynnej nierozpuszczalną warstwą tlenków metali rzadkich (MMO – ang. mixed metal oxide) oraz zasilaniu prądowemu ze źródła zewnętrznego.

1. System ochronny prądowej anody tytanowej składa się z:

- kontrolera potencjału z diodą ostrzegawczą LED
- kompletnej prądowej anody tytanowej z pokryciem rdzenia nierozpuszczalną warstwą tlenków metali rzadkich, korka z gwintem R3/4" lub innym, nakrętek przyłączeniowych i kabli wraz z konektorami.

Grafika nr 1. System ochronny prądowej anody tytanowej

Kontroler potencjału (ē) (ē) (ē) (ē) (e e 20H -02+2H20 (¹/₂O₂+H₂O)-20H $\frac{1}{2}O_{2}+H_{2}O$ 20H Anoda tytanowa Fe (katoda) 20H- $(\frac{1}{2}O_2 + H_2O)$ }0,+H,0) 20H -20H $(\frac{1}{2}O_{2}+H_{2}O)$ 102+1 20)

2. Zasada pracy systemu prądowej anody tytanowej.

Grafika nr 2. Kontroler potencjału wymuszający przepływ prądu ochronnego.

Jak pokazano na grafice numer 2 kontroler potencjału jako zewnętrzne źródło prądu odbiera elektrony z jonu wodorotlenkowego OH⁻ i przemieszcza do katody Fe. Dzięki temu prądowi potencjał Fe-H₂O jest obniżany. W międzyczasie kontroler potencjału stale mierzy potencjał elektrodowy Fe-H₂O i opierając się na tych pomiarach reguluje natężenie prądu ochronnego tak, aby potencjał Fe-H₂O był o wartości zapewniającej brak korozji Fe. W zbiorniku zachodzą reakcje:

- $40H^{-} \rightarrow 2H_2O + O_2 + 4e^{-}$ (anoda)
- $1/2O_2 + H_2O + 2e^- \rightarrow 2OH^-$ (katoda)

П. Dostępne typy systemów prądowych anod tytanowych.

Obecnie dostępne są modele AME i AMT do współpracy ze zbiornikami emaliowanymi i wykonanymi ze stali nierdzewnej. W prosty sposób umożliwiają zastąpienie anod magnezowych w zbiornikach nowych jak i już będących w użyciu. Cechy systemu:

- zasilanie: AC 110 240V, 50-60Hz
- prąd wyjściowy precyzyjnie dobrany do wymagań ochrony zbiornika •
- właściwa ochrona katodowa bez nadmiernego podnoszenia i obniżania potencjału •
- inteligentny system powiadamiania o niesprawności przez diodę LED (kolor zielony led praca prawidłowa, kolor czerwony led – błąd)

	Zbiorniki z blachy węglowej emaliowane			Zbiorniki ze stali nierdzewnej	
Kontroler potencjału	AME200	AME400	AME800	AMT400	AMT800
Napięcie wejściowe AC	110-240 V	110-240 V	110-240 V	110-240 V	110-240 V
	50-60Hz	50-60Hz	50-60Hz	50-60Hz	50-60Hz
Napięcie wyjściowe MAX	DC 10V	DC 10V	DC 10V	DC 10V	DC 10V
Prąd wyjściowy MAX	50 mA	100 mA	180 mA	100 mA	180 mA
Temperatura otoczenia	0-70°C	0-70°C	0-70°C	0-70°C	0-70°C
System ostrzegawczy	Dioda LED	Dioda LED	Dioda LED	Dioda LED	Dioda LED

Cechy anod tytanowych dostarczanych przez AQUAKROS:

- pokrycie warstwą tlenków metali rzadkich (MMO) jest trwałe i nierozpuszczalne w wodzie, czas pracy anod wynosi ponad 10 lat
- standardowy gwint R3/4" do łatwego przyłączenia, trwałe oraz niezawodne uszczelnienie i izolacja elektryczna
- łatwość w instalacji i prostota łączenia okablowania do anody
- powszechnie dostępne korki redukcyjne do większości bojlerów

Grafika nr 3. Anody tytanowe kompletne.

Modele i parametry dostarczanych anod.

Model anody	Średnica	Długość części MMO	Złącze	Prąd znamionowy
Ti200	Ø3 mm	120 mm	R3/4"	50 mA
Ti400	Ø3 mm	220 mm	R3/4"	100 mA
Ti800	Ø3 mm	420 mm	R3/4"	180 mA

III. Tabela zastosowania systemu anod tytanowych.

	Zbiorniki z blachy węglowej emaliowane			Zbiorniki ze stali nierdzewnej	
Pojemność	Kontroler potencjału / Anoda				
zbiornika	AME200/Ti200	AME400/Ti400	AME800/Ti800	AMT400/Ti400	AMT800/Ti800
50 L	•			•	
80 L	•			•	
150 L	•			•	
200 L	•				•
300 L	•				•
400 L	•				•
500 L		•			•
800 L		•			•
1000 L		•			•
1500 L			•		
2000 L			•		

UWAGA.

Zbiorniki gdzie zastosowano ochronę katodową z rozpływem prądu powyżej 150mA (AME800 i AMT800) muszą być wyposażone w automatyczny system usuwania gazów (tak jak i systemy z anodami magnezowymi). W przypadku zakupu systemów AME800 lub AMT800 prosimy o kontakt z firmą AQUAKROS.

IV. Porównanie ochrony katodowej zbiorników przy użyciu prądowych anod tytanowych względem ochrony katodowej poprzez anody magnezowe.

		Prądowa anoda tytanowa	Anoda magnezowa	
1	Żywotność i koszt wymiany.	> 10 lat żywotności	Zazwyczaj mniej niż 2 lata. W przypadku bardzo agresywnej wody nawet poniżej 6 miesięcy	
2	Czy potencjał Fe- H ₂ 0 zostaje utrzymany?	Bardzo stabilny. Potencjał jest precyzyjnie ustalony pomimo zmiennej wartości przewodności wody, temperatury, twardości wody, zawartości soli itp. Zbyt wysoki potencjał ochrony jak i zbyt niski potencjał ochrony nie może wystąpić.	Niestabilny ze względu na wpływ przewodności wody, temperatury, twardości wody, zawartości soli itp.	
3	Jak jest kontrolowany potencjał Fe-H₂0	Automatycznie i precyzyjnie dzięki mikrokontrolerowi.	Bez kontroli	

	4.1	Temperatura	Nie ma wpływu	Tak, wysoka temperatura doprowadza do zwiększenia zużycia anody magnezowej	
	4.2	Przewodność	Nie ma wpływu	Tak, wysoka przewodność doprowadza do zwiększenia zużycia anody magnezowej	
	4.3	Twardość	Nie ma wpływu	Tak wysoka twardość doprowadza do zaburzenia na powierzchni anody magnezowej i powstaniu zbyt niskiego potencjału ochrony	
5	Czy posiada funkcje ostrzegające użytkownika o usterce?		Tak	Brak systemu ostrzegania	
6	Jaki jest efekt zwalczania zapachu zgniłych jaj w zbiorniku?		Pozytywny	Negatywny	

ależność ochrony przeciwkorozyjnej od właściwości wody

V. Likwidacja zapachu siarkowodoru wydzielającego się z ciepłej wody.

Ważnym aczkolwiek mało używanym parametrem jest zawartość tlenu w wodzie surowej. Czasami zdarza się, że woda jest uboga w tlen. Problem ten występuje zwłaszcza w studniach głębinowych i jest bardzo uciążliwy, ze względu na fakt, że w wodzie takiej dochodzi do zjawiska, w wyniku którego woda nabiera woni siarkowodoru, a ściślej pachnie jak "zgniłe jaja".

Problem takiego nieprzyjemnego zapachu wody nie jest związany z budową zbiornika ogrzewacza lub wymiennika c.w.u., a bezpośrednio z własnościami dostarczanej wody. Rzadko zwraca się na to uwagę, ponieważ tlen nie jest ani substancją szkodliwą, ani nie wpływa w żaden sposób na własności użytkowe wody. W urządzeniu, jakim jest podgrzewacz ciepłej wody wyposażony w anodę magnezową, problem zbyt małej ilości tlenu w wodzie przybiera nowy wymiar i staje się źródłem naprawdę niemałych problemów zarówno dla użytkownika, jak i producenta urządzenia.

W przypadku kiedy woda jest uboga w tlen na powierzchni anody magnezowej gromadzą się bakterie beztlenowe. Proces "życia" tych bakterii powoduje wytwarzanie siarkowodoru w wodzie, który objawia się jako woń "zgniłych jaj" w wodzie podgrzewanej w urządzeniu. Najzwyczajniej woda śmierdzi i nie nadaje się do mycia. Zjawisko to nasila się wraz z upływem czasu i jest związane bezpośrednio z działaniem anody magnezowej. Proces wytwarzania nieprzyjemnej woni jest skomplikowany, ale w skrócie można go opisać w następujący sposób: bakterie rozwijające się w wodzie ubogiej w tlen "żerujące" na anodzie magnezowej powodują, że w wodzie wydzielany jest siarkowodór. Nie występuje on w ilościach szkodliwych dla organizmu ludzkiego, lecz jego obecność objawia się właśnie niemiłym zapachem. Taka woda nie nadaje się do użytku, ponieważ woń jest przenoszona z wody na ludzką skórę.

Najskuteczniejszym i najprostszym sposobem eliminacji woni siarkowodoru jest zastosowanie prądowej anody tytanowej. Zastosowanie takiej anody powoduje, że proces wytwarzania siarkowodoru w wodzie zostaje zatrzymany i nieprzyjemny zapach znika. Anoda tytanowa dodatkowo natlenia wodę.

Instrukcja montażu i obsługi systemu anod prądowych AME i AMT.

System anody tytanowej AME i AMT jest dostępny w kilku wersjach. Producenci zbiornikowych pogrzewaczy ciepłej wody informują o tym jaki typ anody jest odpowiedni dla danego zbiornika i jaka powinna być jej wielkość. Dotyczy to zwłaszcza sytuacji, w których w anodę ma zostać wyposażony stary zbiornik. Należy stosować się do zaleceń producenta. W przypadku gdy znamy tylko pojemność zbiornika należy się stosować do tabelki z punktu III.

1. Wskazówki bezpieczeństwa.

Przed zamontowaniem systemu anody tytanowej AME lub AMT należy się upewnić że:

- system będzie eksploatowany w pomieszczeniu zamkniętym i suchym •
- napięcie sieciowe jest zgodne z podanym na tabliczce znamionowej
- napiecie sieciowe jest stale obecne

W trakcie eksploatacji systemu anody tytanowej AME i AMT należy stosować się do następujących zaleceń:

- kontroler potencjału anody nie może być wyłączony z sieci gdy zbiornik jest napełniony wodą, nawet podczas dłuższej nieobecności domowników, gdyż ochrona katodowa zostanie przerwana
- nie wolno odłączać kabli łączących anodę z kontrolerem potencjału podczas działania systemu ochrony katodowej
- zbiornik musi być napełniony do pełna wodą przez cały czas pracy systemu ochrony katodowej, gdyż w przeciwnym wypadku system ochrony katodowej będzie działał nieprawidłowo oraz skróci się żywotność samej anody
- w przypadku zamiaru opróżnienia zbiornika najpierw należy odłączyć od sieci kontroler • potencjału anody,
- należy pobierać ciepłą wodę ze zbiornika przynajmniej raz na miesiąc, ponieważ w dłuższym • okresie mogą się tworzyć poduszki gazowe zakłócające prace systemu ochrony
- montaż oraz wszelkie naprawy i konserwacje systemu można powierzyć tylko osobie • przeszkolonej i z odpowiednimi kwalifikacjami

System anody tytanowej AME i AMT należy stosować tylko zgodnie z przeznaczeniem i zaleceniami niniejszej instrukcji montażu i obsługi. Nie ponosimy żadnej odpowiedzialności za szkody powstałe w wyniku użycia towaru niezgodnie z przeznaczaniem.

2. Zawartość opakowania.

W pudełku znajdują się trzy elementy:

a) kontroler potencjału wraz z kablami przyłączeniowymi dł. ok 3m zakończonymi oczkami 1 szt; oczko kabla niebieskiego ma średnicę 10mm, oczko kabla brązowego jest nieco mniejsze i ma średnicę 8mm.

- b) anoda tytanowa kompletna tzn. z korkiem ocynkowanym z gwintem R3/4" 1 szt; anoda może być zabezpieczona cienką rurką plastikową
- c) niniejsza instrukcja wraz z kartą gwarancyjną 1 szt.

3. Montaż i uruchomienie.

Przed przystąpieniem do montażu systemu prądowej anody tytanowej należy:

- a) zamknąć dopływ wody zimnej do zbiornika
- b) wyłączyć zasilanie grzałki elektrycznej (jeżeli występuje); zakręcić dopływ wody ciepłej do spirali grzejnej zbiornika (gdy występuje) lub w inny sposób zatrzymać dostarczanie ciepła do zbiornika
- c) odpuścić ciśnienie w zbiorniku np. odkręcając kran z ciepła wodą
- d) spuścić wodę z całości lub części zbiornika (jeżeli występuje taka potrzeba)
- e) wymontować anodę magnezową ze zbiornika

Montaż

- a) z anody ściągnąć zabezpieczającą rurkę plastikowa (jeżeli występuje)
- b) używając uszczelnienia (pakuły, teflon, nić hydrauliczna itp.) wkręcić korek z anodą tytanową w otwór montażowy tak jak pokazano na grafice A; użycie uszczelniania ograniczyć do minimum pozostawiając część gwintu goły, aby zapewnić dobry kontakt metaliczny korka z obudową zbiornika
- c) korek anody ma rozmiar R 3/4 i w przypadku, gdy otwór montażowy ma inny wymiar należy użyć redukcji ocynkowanej stosując uszczelnienie, tak jak w podpunkcie a)
- d) trzeba pamiętać, aby anoda nie dotykała części metalowych zbiornika gdyż dobra izolacja anody od obudowy jest podstawą poprawnej pracy systemu
- e) sprawdzić multimetrem rezystancje pomiędzy korkiem anody a obudową zbiornika, powinna ona być nie większa jak 0,5 Ohm
- f) w przypadku gdy mamy spuszczoną wodę lub wiemy, że anoda nie jest w ogóle zanurzona w wodzie sprawdzić rezystancje pomiędzy anodą a obudową zbiornika, powinna być powyżej 1 MOhm
- g) jeżeli mamy zapewniony dobry kontakt metaliczny między korkiem a obudową zbiornika (rezystancja mniejsza jak 0,5 Ohm) to podłączyć kable z kontrolera potencjału tak jak pokazano na grafice B tj. kabel niebieski do obudowy zbiornika czyli między koniec korka, a izolację plastikową, a kabel brązowy dołączyć do anody tj. pomiędzy dwie górne nakrętki
- h) jeżeli nie ma dobrego kontaktu korka z obudową zbiornika to do anody dołączyć tylko kabel brązowy tj. pomiędzy dwie górne nakrętki, a kabel niebieski bezpośrednio do obudowy zbiornika np. do śruby uziemiającej tak jak pokazano na grafice C lub w każdy inny sposób zapewniający dobry kontakt metaliczny obudowy zbiornika; po podłączeniu kabla niebieskiego sprawdzić multimetrem rezystancje miedzy obudową zbiornika a tym kablem
- i) wypełnić wodą zbiornik do pełna, aż anoda będzie cała zanurzona w wodzie
- j) włączyć kontroler potencjału do zasilania; dioda uwidoczniona na grafice D do dwóch minut zmieni kolor czerwony na zielony oznaczający poprawną prace anody
- k) gdyby dioda na kontrolerze potencjału nie świeciła się na zielono należy znaleźć przyczynę nieprawidłowej pracy, które są opisane w dalszej części instrukcji

Grafika B

DIODA

4. Przyczyny niesprawności systemu anod prądowych sygnalizowane przez czerwoną diodę.

- a) rury doprowadzające zimną wodę, odprowadzające ciepłą wodę, doprowadzające i odprowadzające wodę do wężownicy grzejnej nie są elektrycznie odizolowane od zbiornika; w tym wypadku prąd ochronny może być dodatkowo pobierany przez wymienione przyłącza co prowadzi do zwiększonego wydatku prądowego poza limit kontrolera potencjału
- b) zbiornik nie jest do pełna wypełniony wodą lub utworzyły się zbyt duże poduszki gazu wyprodukowanego przez system ochrony katodowej
- c) zła polaryzacja anody (pomylone kable)
- d) zła izolacja pomiędzy anodą tytanową a zbiornikiem
- e) przerwany odwód DC uszkodzony lub oberwany kabel pomiędzy anodą a kontrolerem
- f) niewłaściwie dobrany typ systemu anody tytanowej do wielkości zbiornika tj. za krótka anoda i za mała wydajność kontrolera
- g) emalia zbiornika nadmiernie zużyta lub zniszczona co powoduje wydatek prądowy poza limit kontrolera

